Information on Result #1299832
Linear OA(455, 278, F4, 17) (dual of [278, 223, 18]-code), using construction X with Varšamov bound based on
- linear OA(454, 276, F4, 17) (dual of [276, 222, 18]-code), using
- construction XX applied to C1 = C([251,10]), C2 = C([0,12]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([251,12]) [i] based on
- linear OA(445, 255, F4, 15) (dual of [255, 210, 16]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,10}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(437, 255, F4, 13) (dual of [255, 218, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(449, 255, F4, 17) (dual of [255, 206, 18]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,12}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(433, 255, F4, 11) (dual of [255, 222, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(44, 16, F4, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,4)), using
- linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction XX applied to C1 = C([251,10]), C2 = C([0,12]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([251,12]) [i] based on
- linear OA(454, 277, F4, 16) (dual of [277, 223, 17]-code), using Gilbert–Varšamov bound and bm = 454 > Vbs−1(k−1) = 31 197488 018540 860636 183956 321244 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.