Information on Result #1300035

Linear OA(4109, 1043, F4, 28) (dual of [1043, 934, 29]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(4107, 1039, F4, 28) (dual of [1039, 932, 29]-code), using
    • construction XX applied to C1 = C([1021,24]), C2 = C([0,25]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C([1021,25]) [i] based on
      1. linear OA(4101, 1023, F4, 27) (dual of [1023, 922, 28]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−2,−1,…,24}, and designed minimum distance d ≥ |I|+1 = 28 [i]
      2. linear OA(496, 1023, F4, 26) (dual of [1023, 927, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
      3. linear OA(4106, 1023, F4, 28) (dual of [1023, 917, 29]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−2,−1,…,25}, and designed minimum distance d ≥ |I|+1 = 29 [i]
      4. linear OA(491, 1023, F4, 25) (dual of [1023, 932, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
      5. linear OA(41, 11, F4, 1) (dual of [11, 10, 2]-code), using
      6. linear OA(40, 5, F4, 0) (dual of [5, 5, 1]-code), using
  2. linear OA(4107, 1041, F4, 27) (dual of [1041, 934, 28]-code), using Gilbert–VarÅ¡amov bound and bm = 4107 > Vbs−1(k−1) = 12861 253108 612265 051564 985074 723454 376516 245463 769300 528498 602432 [i]
  3. linear OA(40, 2, F4, 0) (dual of [2, 2, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.