Information on Result #1300102

Linear OA(4119, 1042, F4, 31) (dual of [1042, 923, 32]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(4118, 1040, F4, 31) (dual of [1040, 922, 32]-code), using
    • construction XX applied to C1 = C([1021,26]), C2 = C([0,28]), C3 = C1 + C2 = C([0,26]), and C∩ = C1 ∩ C2 = C([1021,28]) [i] based on
      1. linear OA(4111, 1023, F4, 29) (dual of [1023, 912, 30]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−2,−1,…,26}, and designed minimum distance d ≥ |I|+1 = 30 [i]
      2. linear OA(4106, 1023, F4, 29) (dual of [1023, 917, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
      3. linear OA(4116, 1023, F4, 31) (dual of [1023, 907, 32]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−2,−1,…,28}, and designed minimum distance d ≥ |I|+1 = 32 [i]
      4. linear OA(4101, 1023, F4, 27) (dual of [1023, 922, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
      5. linear OA(41, 11, F4, 1) (dual of [11, 10, 2]-code), using
      6. linear OA(41, 6, F4, 1) (dual of [6, 5, 2]-code), using
  2. linear OA(4118, 1041, F4, 30) (dual of [1041, 923, 31]-code), using Gilbert–VarÅ¡amov bound and bm = 4118 > Vbs−1(k−1) = 16481 592116 995678 500158 591293 911809 607293 184540 516398 406222 825263 104192 [i]
  3. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.