Information on Result #1300612
Linear OA(4185, 229, F4, 96) (dual of [229, 44, 97]-code), using construction X with Varšamov bound based on
- linear OA(4184, 227, F4, 96) (dual of [227, 43, 97]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4183, 225, F4, 96) (dual of [225, 42, 97]-code), using
- 3 times truncation [i] based on linear OA(4186, 228, F4, 99) (dual of [228, 42, 100]-code), using
- concatenation of two codes [i] based on
- linear OA(6424, 38, F64, 24) (dual of [38, 14, 25]-code or 38-arc in PG(23,64)), using
- discarding factors / shortening the dual code based on linear OA(6424, 64, F64, 24) (dual of [64, 40, 25]-code or 64-arc in PG(23,64)), using
- Reed–Solomon code RS(40,64) [i]
- discarding factors / shortening the dual code based on linear OA(6424, 64, F64, 24) (dual of [64, 40, 25]-code or 64-arc in PG(23,64)), using
- linear OA(43, 6, F4, 3) (dual of [6, 3, 4]-code or 6-arc in PG(2,4) or 6-cap in PG(2,4)), using
- linear OA(6424, 38, F64, 24) (dual of [38, 14, 25]-code or 38-arc in PG(23,64)), using
- concatenation of two codes [i] based on
- 3 times truncation [i] based on linear OA(4186, 228, F4, 99) (dual of [228, 42, 100]-code), using
- linear OA(4183, 226, F4, 95) (dual of [226, 43, 96]-code), using Gilbert–Varšamov bound and bm = 4183 > Vbs−1(k−1) = 126 517424 059378 057638 374967 330631 374054 007832 559173 473691 562748 465533 157082 309010 349368 626378 265753 562249 391380 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(4183, 225, F4, 96) (dual of [225, 42, 97]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4184, 228, F4, 95) (dual of [228, 44, 96]-code), using Gilbert–Varšamov bound and bm = 4184 > Vbs−1(k−1) = 368 026314 164468 171666 840213 803132 404189 570936 819616 930417 279811 123287 546583 854340 368779 609459 410092 485948 337480 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.