Information on Result #1300706
Linear OA(4196, 4131, F4, 42) (dual of [4131, 3935, 43]-code), using construction X with Varšamov bound based on
- linear OA(4194, 4127, F4, 42) (dual of [4127, 3933, 43]-code), using
- construction X applied to Ce(41) ⊂ Ce(36) [i] based on
- linear OA(4187, 4096, F4, 42) (dual of [4096, 3909, 43]-code), using an extension Ce(41) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(4163, 4096, F4, 37) (dual of [4096, 3933, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(47, 31, F4, 4) (dual of [31, 24, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(47, 43, F4, 4) (dual of [43, 36, 5]-code), using
- construction X applied to Ce(41) ⊂ Ce(36) [i] based on
- linear OA(4194, 4129, F4, 41) (dual of [4129, 3935, 42]-code), using Gilbert–Varšamov bound and bm = 4194 > Vbs−1(k−1) = 52 709214 155292 634821 749659 557639 596401 308831 576393 176469 247664 258681 018922 101761 287175 640309 151692 411116 285090 198144 [i]
- linear OA(40, 2, F4, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.