Information on Result #1300931
Linear OA(4226, 16435, F4, 41) (dual of [16435, 16209, 42]-code), using construction X with Varšamov bound based on
- linear OA(4224, 16432, F4, 41) (dual of [16432, 16208, 42]-code), using
- construction X applied to Ce(40) ⊂ Ce(33) [i] based on
- linear OA(4211, 16384, F4, 41) (dual of [16384, 16173, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(4176, 16384, F4, 34) (dual of [16384, 16208, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(413, 48, F4, 6) (dual of [48, 35, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
- discarding factors / shortening the dual code based on linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using
- construction X applied to Ce(40) ⊂ Ce(33) [i] based on
- linear OA(4224, 16433, F4, 39) (dual of [16433, 16209, 40]-code), using Gilbert–Varšamov bound and bm = 4224 > Vbs−1(k−1) = 38 910316 460984 938591 808676 393672 796788 472785 450207 635530 637340 622731 105555 739588 683803 907298 092194 261335 815563 670119 830701 203162 930233 [i]
- linear OA(41, 2, F4, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.