Information on Result #1301045
Linear OA(4235, 16444, F4, 42) (dual of [16444, 16209, 43]-code), using construction X with Varšamov bound based on
- linear OA(4234, 16442, F4, 42) (dual of [16442, 16208, 43]-code), using
- construction X applied to Ce(41) ⊂ Ce(33) [i] based on
- linear OA(4218, 16384, F4, 42) (dual of [16384, 16166, 43]-code), using an extension Ce(41) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(4176, 16384, F4, 34) (dual of [16384, 16208, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(416, 58, F4, 7) (dual of [58, 42, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(416, 63, F4, 7) (dual of [63, 47, 8]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
- discarding factors / shortening the dual code based on linear OA(416, 63, F4, 7) (dual of [63, 47, 8]-code), using
- construction X applied to Ce(41) ⊂ Ce(33) [i] based on
- linear OA(4234, 16443, F4, 41) (dual of [16443, 16209, 42]-code), using Gilbert–Varšamov bound and bm = 4234 > Vbs−1(k−1) = 61 819403 114873 226485 833266 036684 050890 160681 332685 895389 803893 567962 294871 656738 132578 429412 658505 474663 367560 956183 499174 962942 751636 408513 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.