Information on Result #1301093

Linear OA(4246, 262219, F4, 34) (dual of [262219, 261973, 35]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(4242, 262213, F4, 34) (dual of [262213, 261971, 35]-code), using
    • construction X applied to Ce(33) ⊂ Ce(25) [i] based on
      1. linear OA(4226, 262144, F4, 34) (dual of [262144, 261918, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 262143 = 49−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
      2. linear OA(4172, 262144, F4, 26) (dual of [262144, 261972, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 262143 = 49−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
      3. linear OA(416, 69, F4, 7) (dual of [69, 53, 8]-code), using
        • construction XX applied to C1 = C({0,1,2,3,47}), C2 = C([0,5]), C3 = C1 + C2 = C([0,3]), and C∩ = C1 ∩ C2 = C({0,1,2,3,5,47}) [i] based on
          1. linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,47}, and minimum distance d ≥ |{−1,0,…,4}|+1 = 7 (BCH-bound) [i]
          2. linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
          3. linear OA(416, 63, F4, 7) (dual of [63, 47, 8]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,47}, and minimum distance d ≥ |{−1,0,…,5}|+1 = 8 (BCH-bound) [i]
          4. linear OA(410, 63, F4, 5) (dual of [63, 53, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 6 [i]
          5. linear OA(40, 3, F4, 0) (dual of [3, 3, 1]-code), using
          6. linear OA(40, 3, F4, 0) (dual of [3, 3, 1]-code) (see above)
  2. linear OA(4242, 262215, F4, 31) (dual of [262215, 261973, 32]-code), using Gilbert–VarÅ¡amov bound and bm = 4242 > Vbs−1(k−1) = 2 811576 467430 739576 007990 646935 517293 333925 517242 298989 886311 909224 166316 046942 916158 249973 600072 205210 829389 973017 144418 589096 279033 684260 617504 [i]
  3. linear OA(42, 4, F4, 2) (dual of [4, 2, 3]-code or 4-arc in PG(1,4)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.