Information on Result #1301113
Linear OA(4249, 262204, F4, 35) (dual of [262204, 261955, 36]-code), using construction X with Varšamov bound based on
- linear OA(4245, 262199, F4, 35) (dual of [262199, 261954, 36]-code), using
- construction X applied to Ce(34) ⊂ Ce(28) [i] based on
- linear OA(4235, 262144, F4, 35) (dual of [262144, 261909, 36]-code), using an extension Ce(34) of the primitive narrow-sense BCH-code C(I) with length 262143 = 49−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(4190, 262144, F4, 29) (dual of [262144, 261954, 30]-code), using an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 262143 = 49−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(410, 55, F4, 5) (dual of [55, 45, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(410, 63, F4, 5) (dual of [63, 53, 6]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 6 [i]
- discarding factors / shortening the dual code based on linear OA(410, 63, F4, 5) (dual of [63, 53, 6]-code), using
- construction X applied to Ce(34) ⊂ Ce(28) [i] based on
- linear OA(4245, 262200, F4, 31) (dual of [262200, 261955, 32]-code), using Gilbert–Varšamov bound and bm = 4245 > Vbs−1(k−1) = 2 806755 104887 916751 946635 162436 277846 425908 729949 363105 139100 884407 236642 552121 201004 622651 986875 197704 278492 218061 128162 725740 293444 910642 140004 [i]
- linear OA(43, 4, F4, 3) (dual of [4, 1, 4]-code or 4-arc in PG(2,4) or 4-cap in PG(2,4)), using
- dual of repetition code with length 4 [i]
- Reed–Solomon code RS(1,4) [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.