Information on Result #1301255

Linear OA(532, 641, F5, 9) (dual of [641, 609, 10]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(530, 637, F5, 9) (dual of [637, 607, 10]-code), using
    • construction XX applied to C1 = C([622,5]), C2 = C([0,6]), C3 = C1 + C2 = C([0,5]), and C∩ = C1 ∩ C2 = C([622,6]) [i] based on
      1. linear OA(525, 624, F5, 8) (dual of [624, 599, 9]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−2,−1,…,5}, and designed minimum distance d ≥ |I|+1 = 9 [i]
      2. linear OA(521, 624, F5, 7) (dual of [624, 603, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
      3. linear OA(529, 624, F5, 9) (dual of [624, 595, 10]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
      4. linear OA(517, 624, F5, 6) (dual of [624, 607, 7]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
      5. linear OA(51, 9, F5, 1) (dual of [9, 8, 2]-code), using
      6. linear OA(50, 4, F5, 0) (dual of [4, 4, 1]-code), using
  2. linear OA(530, 639, F5, 8) (dual of [639, 609, 9]-code), using Gilbert–VarÅ¡amov bound and bm = 530 > Vbs−1(k−1) = 135 704466 644348 764713 [i]
  3. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.