Information on Result #1301456
Linear OA(574, 139, F5, 34) (dual of [139, 65, 35]-code), using construction X with Varšamov bound based on
- linear OA(568, 130, F5, 34) (dual of [130, 62, 35]-code), using
- construction XX applied to C1 = C([123,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([123,32]) [i] based on
- linear OA(565, 124, F5, 33) (dual of [124, 59, 34]-code), using the primitive BCH-code C(I) with length 124 = 53−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(565, 124, F5, 33) (dual of [124, 59, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 124 = 53−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(568, 124, F5, 34) (dual of [124, 56, 35]-code), using the primitive BCH-code C(I) with length 124 = 53−1, defining interval I = {−1,0,…,32}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(562, 124, F5, 32) (dual of [124, 62, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 124 = 53−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(50, 3, F5, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(50, 3, F5, 0) (dual of [3, 3, 1]-code) (see above)
- construction XX applied to C1 = C([123,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([123,32]) [i] based on
- linear OA(568, 133, F5, 30) (dual of [133, 65, 31]-code), using Gilbert–Varšamov bound and bm = 568 > Vbs−1(k−1) = 39559 758129 896508 362049 790210 560326 430757 773425 [i]
- linear OA(53, 6, F5, 3) (dual of [6, 3, 4]-code or 6-arc in PG(2,5) or 6-cap in PG(2,5)), using
- extended Reed–Solomon code RSe(3,5) [i]
- oval in PG(2, 5) [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.