Information on Result #1301488
Linear OA(576, 640, F5, 23) (dual of [640, 564, 24]-code), using construction X with Varšamov bound based on
- linear OA(575, 638, F5, 23) (dual of [638, 563, 24]-code), using
- construction XX applied to C1 = C([622,18]), C2 = C([0,20]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([622,20]) [i] based on
- linear OA(569, 624, F5, 21) (dual of [624, 555, 22]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(565, 624, F5, 21) (dual of [624, 559, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(573, 624, F5, 23) (dual of [624, 551, 24]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(561, 624, F5, 19) (dual of [624, 563, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(51, 9, F5, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(51, 5, F5, 1) (dual of [5, 4, 2]-code), using
- Reed–Solomon code RS(4,5) [i]
- construction XX applied to C1 = C([622,18]), C2 = C([0,20]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([622,20]) [i] based on
- linear OA(575, 639, F5, 22) (dual of [639, 564, 23]-code), using Gilbert–Varšamov bound and bm = 575 > Vbs−1(k−1) = 4958 473743 484212 149630 796131 256779 605284 523606 147625 [i]
- linear OA(50, 1, F5, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.