Information on Result #1301521

Linear OA(581, 138, F5, 39) (dual of [138, 57, 40]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(580, 136, F5, 39) (dual of [136, 56, 40]-code), using
    • construction XX applied to C1 = C([26,62]), C2 = C([29,64]), C3 = C1 + C2 = C([29,62]), and C∩ = C1 ∩ C2 = C([26,64]) [i] based on
      1. linear OA(571, 124, F5, 37) (dual of [124, 53, 38]-code), using the primitive BCH-code C(I) with length 124 = 53−1, defining interval I = {26,27,…,62}, and designed minimum distance d ≥ |I|+1 = 38 [i]
      2. linear OA(574, 124, F5, 36) (dual of [124, 50, 37]-code), using the primitive BCH-code C(I) with length 124 = 53−1, defining interval I = {29,30,…,64}, and designed minimum distance d ≥ |I|+1 = 37 [i]
      3. linear OA(577, 124, F5, 39) (dual of [124, 47, 40]-code), using the primitive BCH-code C(I) with length 124 = 53−1, defining interval I = {26,27,…,64}, and designed minimum distance d ≥ |I|+1 = 40 [i]
      4. linear OA(568, 124, F5, 34) (dual of [124, 56, 35]-code), using the primitive BCH-code C(I) with length 124 = 53−1, defining interval I = {29,30,…,62}, and designed minimum distance d ≥ |I|+1 = 35 [i]
      5. linear OA(52, 5, F5, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,5)), using
      6. linear OA(51, 7, F5, 1) (dual of [7, 6, 2]-code), using
  2. linear OA(580, 137, F5, 38) (dual of [137, 57, 39]-code), using Gilbert–VarÅ¡amov bound and bm = 580 > Vbs−1(k−1) = 59 270185 276068 497448 189418 169471 019286 191251 687849 030625 [i]
  3. linear OA(50, 1, F5, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.