Information on Result #1301542
Linear OA(586, 78162, F5, 14) (dual of [78162, 78076, 15]-code), using construction X with Varšamov bound based on
- linear OA(585, 78160, F5, 14) (dual of [78160, 78075, 15]-code), using
- construction X applied to Ce(13) ⊂ Ce(8) [i] based on
- linear OA(578, 78125, F5, 14) (dual of [78125, 78047, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 78124 = 57−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(550, 78125, F5, 9) (dual of [78125, 78075, 10]-code), using an extension Ce(8) of the primitive narrow-sense BCH-code C(I) with length 78124 = 57−1, defining interval I = [1,8], and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(57, 35, F5, 4) (dual of [35, 28, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(57, 44, F5, 4) (dual of [44, 37, 5]-code), using
- construction X applied to Ce(13) ⊂ Ce(8) [i] based on
- linear OA(585, 78161, F5, 13) (dual of [78161, 78076, 14]-code), using Gilbert–Varšamov bound and bm = 585 > Vbs−1(k−1) = 1819 061854 118118 608512 126373 306680 779295 246871 936393 513665 [i]
- linear OA(50, 1, F5, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(586, 78162, F5, 2, 14) (dual of [(78162, 2), 156238, 15]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(586, 78162, F5, 3, 14) (dual of [(78162, 3), 234400, 15]-NRT-code) | [i] | ||
3 | Digital (72, 86, 78162)-net over F5 | [i] | ||
4 | Linear OOA(586, 39081, F5, 2, 14) (dual of [(39081, 2), 78076, 15]-NRT-code) | [i] | OOA Folding |