Information on Result #1301569
Linear OA(590, 15668, F5, 17) (dual of [15668, 15578, 18]-code), using construction X with Varšamov bound based on
- linear OA(588, 15664, F5, 17) (dual of [15664, 15576, 18]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(579, 15625, F5, 17) (dual of [15625, 15546, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 15624 = 56−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(549, 15625, F5, 11) (dual of [15625, 15576, 12]-code), using an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 15624 = 56−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(59, 39, F5, 5) (dual of [39, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(59, 44, F5, 5) (dual of [44, 35, 6]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(588, 15666, F5, 16) (dual of [15666, 15578, 17]-code), using Gilbert–Varšamov bound and bm = 588 > Vbs−1(k−1) = 684775 809621 949114 753214 447816 544653 717646 047568 928814 544965 [i]
- linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(590, 15668, F5, 2, 17) (dual of [(15668, 2), 31246, 18]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(590, 15668, F5, 3, 17) (dual of [(15668, 3), 46914, 18]-NRT-code) | [i] | ||
3 | Digital (73, 90, 15668)-net over F5 | [i] | ||
4 | Linear OOA(590, 7834, F5, 2, 17) (dual of [(7834, 2), 15578, 18]-NRT-code) | [i] | OOA Folding |