Information on Result #1302054

Linear OA(752, 358, F7, 19) (dual of [358, 306, 20]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(751, 356, F7, 19) (dual of [356, 305, 20]-code), using
    • construction XX applied to C1 = C([340,14]), C2 = C([0,16]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([340,16]) [i] based on
      1. linear OA(743, 342, F7, 17) (dual of [342, 299, 18]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−2,−1,…,14}, and designed minimum distance d ≥ |I|+1 = 18 [i]
      2. linear OA(743, 342, F7, 17) (dual of [342, 299, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
      3. linear OA(749, 342, F7, 19) (dual of [342, 293, 20]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−2,−1,…,16}, and designed minimum distance d ≥ |I|+1 = 20 [i]
      4. linear OA(737, 342, F7, 15) (dual of [342, 305, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
      5. linear OA(71, 7, F7, 1) (dual of [7, 6, 2]-code), using
      6. linear OA(71, 7, F7, 1) (dual of [7, 6, 2]-code) (see above)
  2. linear OA(751, 357, F7, 18) (dual of [357, 306, 19]-code), using Gilbert–VarÅ¡amov bound and bm = 751 > Vbs−1(k−1) = 771348 406053 553095 165175 658520 715507 855969 [i]
  3. linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.