Information on Result #1302116
Linear OA(764, 76, F7, 43) (dual of [76, 12, 44]-code), using construction X with Varšamov bound based on
- linear OA(763, 74, F7, 43) (dual of [74, 11, 44]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(762, 72, F7, 43) (dual of [72, 10, 44]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(756, 64, F7, 43) (dual of [64, 8, 44]-code), using
- linear OA(756, 66, F7, 38) (dual of [66, 10, 39]-code), using Gilbert–Varšamov bound and bm = 756 > Vbs−1(k−1) = 153849 239853 628841 242167 040641 790977 948067 576327 [i]
- linear OA(74, 6, F7, 4) (dual of [6, 2, 5]-code or 6-arc in PG(3,7)), using
- discarding factors / shortening the dual code based on linear OA(74, 7, F7, 4) (dual of [7, 3, 5]-code or 7-arc in PG(3,7)), using
- Reed–Solomon code RS(3,7) [i]
- discarding factors / shortening the dual code based on linear OA(74, 7, F7, 4) (dual of [7, 3, 5]-code or 7-arc in PG(3,7)), using
- construction X with Varšamov bound [i] based on
- linear OA(762, 73, F7, 42) (dual of [73, 11, 43]-code), using Gilbert–Varšamov bound and bm = 762 > Vbs−1(k−1) = 22616 687553 150707 889439 370519 548700 591515 324837 260481 [i]
- linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(762, 72, F7, 43) (dual of [72, 10, 44]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(763, 75, F7, 42) (dual of [75, 12, 43]-code), using Gilbert–Varšamov bound and bm = 763 > Vbs−1(k−1) = 113948 059583 295004 739949 161769 723376 831574 865735 340273 [i]
- linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.