Information on Result #1302237
Linear OA(787, 99, F7, 60) (dual of [99, 12, 61]-code), using construction X with Varšamov bound based on
- linear OA(786, 97, F7, 60) (dual of [97, 11, 61]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(785, 95, F7, 60) (dual of [95, 10, 61]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(778, 86, F7, 60) (dual of [86, 8, 61]-code), using
- 2 times truncation [i] based on linear OA(780, 88, F7, 62) (dual of [88, 8, 63]-code), using
- linear OA(778, 88, F7, 54) (dual of [88, 10, 55]-code), using Gilbert–Varšamov bound and bm = 778 > Vbs−1(k−1) = 388071 858097 288470 414478 834157 225183 837044 996528 075538 881278 017911 [i]
- linear OA(75, 7, F7, 5) (dual of [7, 2, 6]-code or 7-arc in PG(4,7)), using
- Reed–Solomon code RS(2,7) [i]
- linear OA(778, 86, F7, 60) (dual of [86, 8, 61]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(785, 96, F7, 59) (dual of [96, 11, 60]-code), using Gilbert–Varšamov bound and bm = 785 > Vbs−1(k−1) = 578650 466767 616147 874564 651880 924507 729529 960315 104152 216970 864303 338679 [i]
- linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(785, 95, F7, 60) (dual of [95, 10, 61]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(786, 98, F7, 59) (dual of [98, 12, 60]-code), using Gilbert–Varšamov bound and bm = 786 > Vbs−1(k−1) = 3 577387 337028 045006 580487 522236 283789 101249 996577 098879 281637 978635 949831 [i]
- linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.