Information on Result #1302300
Linear OA(7100, 16843, F7, 22) (dual of [16843, 16743, 23]-code), using construction X with Varšamov bound based on
- linear OA(798, 16839, F7, 22) (dual of [16839, 16741, 23]-code), using
- construction X applied to Ce(21) ⊂ Ce(15) [i] based on
- linear OA(791, 16807, F7, 22) (dual of [16807, 16716, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 16806 = 75−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(766, 16807, F7, 16) (dual of [16807, 16741, 17]-code), using an extension Ce(15) of the primitive narrow-sense BCH-code C(I) with length 16806 = 75−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(77, 32, F7, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(77, 43, F7, 5) (dual of [43, 36, 6]-code), using
- construction X applied to Ce(21) ⊂ Ce(15) [i] based on
- linear OA(798, 16841, F7, 21) (dual of [16841, 16743, 22]-code), using Gilbert–Varšamov bound and bm = 798 > Vbs−1(k−1) = 4999 497023 525460 248707 278056 472504 683662 268655 250744 110435 331261 640806 056602 480833 [i]
- linear OA(70, 2, F7, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(7100, 16843, F7, 2, 22) (dual of [(16843, 2), 33586, 23]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(7100, 16843, F7, 3, 22) (dual of [(16843, 3), 50429, 23]-NRT-code) | [i] | ||
3 | Digital (78, 100, 16843)-net over F7 | [i] | ||
4 | Linear OOA(7100, 8421, F7, 2, 22) (dual of [(8421, 2), 16742, 23]-NRT-code) | [i] | OOA Folding |