Information on Result #1302364
Linear OA(7109, 16841, F7, 24) (dual of [16841, 16732, 25]-code), using construction X with Varšamov bound based on
- linear OA(7108, 16839, F7, 24) (dual of [16839, 16731, 25]-code), using
- construction X applied to Ce(23) ⊂ Ce(17) [i] based on
- linear OA(7101, 16807, F7, 24) (dual of [16807, 16706, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 16806 = 75−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(776, 16807, F7, 18) (dual of [16807, 16731, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 16806 = 75−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(77, 32, F7, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(77, 43, F7, 5) (dual of [43, 36, 6]-code), using
- construction X applied to Ce(23) ⊂ Ce(17) [i] based on
- linear OA(7108, 16840, F7, 23) (dual of [16840, 16732, 24]-code), using Gilbert–Varšamov bound and bm = 7108 > Vbs−1(k−1) = 110066 178284 329418 975783 632010 415766 623813 526751 678964 512444 387395 123279 825016 886708 045559 [i]
- linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(7109, 16841, F7, 2, 24) (dual of [(16841, 2), 33573, 25]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(7109, 16841, F7, 3, 24) (dual of [(16841, 3), 50414, 25]-NRT-code) | [i] | ||
3 | Digital (85, 109, 16841)-net over F7 | [i] |