Information on Result #1302660
Linear OA(897, 32797, F8, 21) (dual of [32797, 32700, 22]-code), using construction X with Varšamov bound based on
- linear OA(895, 32793, F8, 21) (dual of [32793, 32698, 22]-code), using
- construction X applied to C([0,10]) ⊂ C([0,8]) [i] based on
- linear OA(891, 32769, F8, 21) (dual of [32769, 32678, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 32769 | 810−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound) [i]
- linear OA(871, 32769, F8, 17) (dual of [32769, 32698, 18]-code), using the expurgated narrow-sense BCH-code C(I) with length 32769 | 810−1, defining interval I = [0,8], and minimum distance d ≥ |{−8,−7,…,8}|+1 = 18 (BCH-bound) [i]
- linear OA(84, 24, F8, 3) (dual of [24, 20, 4]-code or 24-cap in PG(3,8)), using
- construction X applied to C([0,10]) ⊂ C([0,8]) [i] based on
- linear OA(895, 32795, F8, 20) (dual of [32795, 32700, 21]-code), using Gilbert–Varšamov bound and bm = 895 > Vbs−1(k−1) = 5 883456 714137 589836 308902 635075 121004 507437 308947 752484 236222 330070 545601 524822 299572 [i]
- linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(897, 32797, F8, 2, 21) (dual of [(32797, 2), 65497, 22]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(897, 32797, F8, 3, 21) (dual of [(32797, 3), 98294, 22]-NRT-code) | [i] | ||
3 | Digital (76, 97, 32797)-net over F8 | [i] | ||
4 | Linear OOA(897, 16398, F8, 2, 21) (dual of [(16398, 2), 32699, 22]-NRT-code) | [i] | OOA Folding |