Information on Result #1302671
Linear OA(899, 262183, F8, 18) (dual of [262183, 262084, 19]-code), using construction X with Varšamov bound based on
- linear OA(898, 262181, F8, 18) (dual of [262181, 262083, 19]-code), using
- construction X applied to Ce(17) ⊂ Ce(11) [i] based on
- linear OA(891, 262144, F8, 18) (dual of [262144, 262053, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(861, 262144, F8, 12) (dual of [262144, 262083, 13]-code), using an extension Ce(11) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(87, 37, F8, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(17) ⊂ Ce(11) [i] based on
- linear OA(898, 262182, F8, 17) (dual of [262182, 262084, 18]-code), using Gilbert–Varšamov bound and bm = 898 > Vbs−1(k−1) = 791 358920 727010 713090 495044 118138 667381 106473 184905 462452 856577 717517 541734 557402 086574 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(899, 262183, F8, 2, 18) (dual of [(262183, 2), 524267, 19]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(899, 262183, F8, 3, 18) (dual of [(262183, 3), 786450, 19]-NRT-code) | [i] | ||
3 | Digital (81, 99, 262183)-net over F8 | [i] |