Information on Result #1302711
Linear OA(8106, 32795, F8, 23) (dual of [32795, 32689, 24]-code), using construction X with Varšamov bound based on
- linear OA(8105, 32793, F8, 23) (dual of [32793, 32688, 24]-code), using
- construction X applied to C([0,11]) ⊂ C([0,9]) [i] based on
- linear OA(8101, 32769, F8, 23) (dual of [32769, 32668, 24]-code), using the expurgated narrow-sense BCH-code C(I) with length 32769 | 810−1, defining interval I = [0,11], and minimum distance d ≥ |{−11,−10,…,11}|+1 = 24 (BCH-bound) [i]
- linear OA(881, 32769, F8, 19) (dual of [32769, 32688, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 32769 | 810−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- linear OA(84, 24, F8, 3) (dual of [24, 20, 4]-code or 24-cap in PG(3,8)), using
- construction X applied to C([0,11]) ⊂ C([0,9]) [i] based on
- linear OA(8105, 32794, F8, 22) (dual of [32794, 32689, 23]-code), using Gilbert–Varšamov bound and bm = 8105 > Vbs−1(k−1) = 736 846622 877699 727548 065720 833650 185150 366695 917438 710528 843552 167832 647540 956109 779422 946224 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8106, 32795, F8, 2, 23) (dual of [(32795, 2), 65484, 24]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(8106, 32795, F8, 3, 23) (dual of [(32795, 3), 98279, 24]-NRT-code) | [i] | ||
3 | Digital (83, 106, 32795)-net over F8 | [i] |