Information on Result #1302763
Linear OA(8115, 129, F8, 82) (dual of [129, 14, 83]-code), using construction X with Varšamov bound based on
- linear OA(8114, 127, F8, 82) (dual of [127, 13, 83]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(8104, 114, F8, 82) (dual of [114, 10, 83]-code), using
- 3 times truncation [i] based on linear OA(8107, 117, F8, 85) (dual of [117, 10, 86]-code), using
- linear OA(8104, 117, F8, 74) (dual of [117, 13, 75]-code), using Gilbert–Varšamov bound and bm = 8104 > Vbs−1(k−1) = 8078 675144 178661 232264 587548 672856 142654 448034 551257 253401 422852 989360 551307 348093 068553 598598 [i]
- linear OA(87, 10, F8, 7) (dual of [10, 3, 8]-code or 10-arc in PG(6,8)), using
- Denniston code D(1,8) [i]
- linear OA(8104, 114, F8, 82) (dual of [114, 10, 83]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(8114, 128, F8, 81) (dual of [128, 14, 82]-code), using Gilbert–Varšamov bound and bm = 8114 > Vbs−1(k−1) = 8 633060 781314 486349 587728 389657 967745 123993 244051 612923 937717 366931 210755 909540 464676 678061 207319 457259 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(8116, 131, F8, 82) (dual of [131, 15, 83]-code) | [i] | Construction X with Varšamov Bound |