Information on Result #1302776
Linear OA(8117, 262183, F8, 21) (dual of [262183, 262066, 22]-code), using construction X with Varšamov bound based on
- linear OA(8116, 262181, F8, 21) (dual of [262181, 262065, 22]-code), using
- construction X applied to Ce(20) ⊂ Ce(14) [i] based on
- linear OA(8109, 262144, F8, 21) (dual of [262144, 262035, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(879, 262144, F8, 15) (dual of [262144, 262065, 16]-code), using an extension Ce(14) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,14], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(87, 37, F8, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(20) ⊂ Ce(14) [i] based on
- linear OA(8116, 262182, F8, 20) (dual of [262182, 262066, 21]-code), using Gilbert–Varšamov bound and bm = 8116 > Vbs−1(k−1) = 841225 577927 399353 496156 463638 310786 893012 991560 046145 182004 640653 015003 040084 676041 215473 358640 122424 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8117, 262183, F8, 2, 21) (dual of [(262183, 2), 524249, 22]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(8117, 262183, F8, 3, 21) (dual of [(262183, 3), 786432, 22]-NRT-code) | [i] | ||
3 | Digital (96, 117, 262183)-net over F8 | [i] |