Information on Result #1302868
Linear OA(8137, 262186, F8, 25) (dual of [262186, 262049, 26]-code), using construction X with Varšamov bound based on
- linear OA(8134, 262181, F8, 25) (dual of [262181, 262047, 26]-code), using
- construction X applied to Ce(24) ⊂ Ce(18) [i] based on
- linear OA(8127, 262144, F8, 25) (dual of [262144, 262017, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(897, 262144, F8, 19) (dual of [262144, 262047, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(87, 37, F8, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(24) ⊂ Ce(18) [i] based on
- linear OA(8134, 262183, F8, 23) (dual of [262183, 262049, 24]-code), using Gilbert–Varšamov bound and bm = 8134 > Vbs−1(k−1) = 562 698848 747882 810334 103419 868429 505480 209653 351973 955625 307055 928510 667060 047345 580128 480271 059451 651848 975896 959312 [i]
- linear OA(81, 3, F8, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, s, F8, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.