Information on Result #1303023
Linear OA(8165, 2097199, F8, 26) (dual of [2097199, 2097034, 27]-code), using construction X with Varšamov bound based on
- linear OA(8162, 2097194, F8, 26) (dual of [2097194, 2097032, 27]-code), using
- construction X applied to Ce(25) ⊂ Ce(19) [i] based on
- linear OA(8155, 2097152, F8, 26) (dual of [2097152, 2096997, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 87−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(8120, 2097152, F8, 20) (dual of [2097152, 2097032, 21]-code), using an extension Ce(19) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 87−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(87, 42, F8, 5) (dual of [42, 35, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(25) ⊂ Ce(19) [i] based on
- linear OA(8162, 2097196, F8, 24) (dual of [2097196, 2097034, 25]-code), using Gilbert–Varšamov bound and bm = 8162 > Vbs−1(k−1) = 26448 527214 774403 546217 082826 755390 853874 109767 821213 382648 807709 163593 247226 646723 564515 586357 260833 739692 533994 719018 193888 456293 568029 788016 [i]
- linear OA(81, 3, F8, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, s, F8, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.