Information on Result #1303273

Linear OA(983, 100, F9, 58) (dual of [100, 17, 59]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(980, 96, F9, 58) (dual of [96, 16, 59]-code), using
    • 2 times truncation [i] based on linear OA(982, 98, F9, 60) (dual of [98, 16, 61]-code), using
      • construction X applied to Ce(59) ⊂ Ce(49) [i] based on
        1. linear OA(972, 81, F9, 60) (dual of [81, 9, 61]-code), using an extension Ce(59) of the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,59], and designed minimum distance d ≥ |I|+1 = 60 [i]
        2. linear OA(965, 81, F9, 50) (dual of [81, 16, 51]-code), using an extension Ce(49) of the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
        3. linear OA(910, 17, F9, 9) (dual of [17, 7, 10]-code), using
  2. linear OA(980, 97, F9, 55) (dual of [97, 17, 56]-code), using Gilbert–VarÅ¡amov bound and bm = 980 > Vbs−1(k−1) = 21173 617431 591294 666782 661453 451621 270457 807826 967138 296487 031584 085115 352833 [i]
  3. linear OA(92, 3, F9, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,9)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.