Information on Result #1303306
Linear OA(986, 6584, F9, 23) (dual of [6584, 6498, 24]-code), using construction X with Varšamov bound based on
- linear OA(985, 6582, F9, 23) (dual of [6582, 6497, 24]-code), using
- construction X applied to C([0,11]) ⊂ C([0,9]) [i] based on
- linear OA(981, 6562, F9, 23) (dual of [6562, 6481, 24]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 98−1, defining interval I = [0,11], and minimum distance d ≥ |{−11,−10,…,11}|+1 = 24 (BCH-bound) [i]
- linear OA(965, 6562, F9, 19) (dual of [6562, 6497, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 98−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- linear OA(94, 20, F9, 3) (dual of [20, 16, 4]-code or 20-cap in PG(3,9)), using
- construction X applied to C([0,11]) ⊂ C([0,9]) [i] based on
- linear OA(985, 6583, F9, 22) (dual of [6583, 6498, 23]-code), using Gilbert–Varšamov bound and bm = 985 > Vbs−1(k−1) = 26 814169 877549 515474 861916 378537 977998 472229 181722 664257 705239 781331 415610 473329 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(986, 6584, F9, 2, 23) (dual of [(6584, 2), 13082, 24]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(986, 6584, F9, 3, 23) (dual of [(6584, 3), 19666, 24]-NRT-code) | [i] | ||
3 | Digital (63, 86, 6584)-net over F9 | [i] | ||
4 | Linear OOA(986, 3292, F9, 2, 23) (dual of [(3292, 2), 6498, 24]-NRT-code) | [i] | OOA Folding |