Information on Result #1303322
Linear OA(989, 59083, F9, 19) (dual of [59083, 58994, 20]-code), using construction X with Varšamov bound based on
- linear OA(988, 59081, F9, 19) (dual of [59081, 58993, 20]-code), using
- construction X applied to Ce(18) ⊂ Ce(12) [i] based on
- linear OA(981, 59049, F9, 19) (dual of [59049, 58968, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(956, 59049, F9, 13) (dual of [59049, 58993, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(97, 32, F9, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(18) ⊂ Ce(12) [i] based on
- linear OA(988, 59082, F9, 18) (dual of [59082, 58994, 19]-code), using Gilbert–Varšamov bound and bm = 988 > Vbs−1(k−1) = 8224 136702 443124 395013 884791 154226 847088 382657 031931 169574 707289 403894 849757 896521 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(989, 59083, F9, 2, 19) (dual of [(59083, 2), 118077, 20]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(989, 59083, F9, 3, 19) (dual of [(59083, 3), 177160, 20]-NRT-code) | [i] | ||
3 | Digital (70, 89, 59083)-net over F9 | [i] |