Information on Result #1303427
Linear OA(9116, 59076, F9, 25) (dual of [59076, 58960, 26]-code), using construction X with Varšamov bound based on
- linear OA(9115, 59074, F9, 25) (dual of [59074, 58959, 26]-code), using
- construction X applied to C([0,12]) ⊂ C([0,10]) [i] based on
- linear OA(9111, 59050, F9, 25) (dual of [59050, 58939, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 59050 | 910−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(991, 59050, F9, 21) (dual of [59050, 58959, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 59050 | 910−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound) [i]
- linear OA(94, 24, F9, 3) (dual of [24, 20, 4]-code or 24-cap in PG(3,9)), using
- construction X applied to C([0,12]) ⊂ C([0,10]) [i] based on
- linear OA(9115, 59075, F9, 24) (dual of [59075, 58960, 25]-code), using Gilbert–Varšamov bound and bm = 9115 > Vbs−1(k−1) = 1 255604 631999 208569 083909 555075 255393 897323 850459 716170 710371 218589 623647 439591 002121 561914 543115 541001 485905 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9116, 59076, F9, 2, 25) (dual of [(59076, 2), 118036, 26]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9116, 59076, F9, 3, 25) (dual of [(59076, 3), 177112, 26]-NRT-code) | [i] | ||
3 | Digital (91, 116, 59076)-net over F9 | [i] | ||
4 | Linear OOA(9116, 29538, F9, 2, 25) (dual of [(29538, 2), 58960, 26]-NRT-code) | [i] | OOA Folding |