Information on Result #1303464
Linear OA(9123, 137, F9, 90) (dual of [137, 14, 91]-code), using construction X with Varšamov bound based on
- linear OA(9122, 135, F9, 90) (dual of [135, 13, 91]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9116, 127, F9, 90) (dual of [127, 11, 91]-code), using
- 3 times truncation [i] based on linear OA(9119, 130, F9, 93) (dual of [130, 11, 94]-code), using
- linear OA(9116, 129, F9, 85) (dual of [129, 13, 86]-code), using Gilbert–Varšamov bound and bm = 9116 > Vbs−1(k−1) = 411 942814 475007 839717 056860 905878 944519 560678 710784 169514 372079 331444 506452 304910 479220 467103 826369 805066 236929 [i]
- linear OA(94, 6, F9, 4) (dual of [6, 2, 5]-code or 6-arc in PG(3,9)), using
- discarding factors / shortening the dual code based on linear OA(94, 9, F9, 4) (dual of [9, 5, 5]-code or 9-arc in PG(3,9)), using
- Reed–Solomon code RS(5,9) [i]
- discarding factors / shortening the dual code based on linear OA(94, 9, F9, 4) (dual of [9, 5, 5]-code or 9-arc in PG(3,9)), using
- linear OA(9116, 127, F9, 90) (dual of [127, 11, 91]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9122, 136, F9, 89) (dual of [136, 14, 90]-code), using Gilbert–Varšamov bound and bm = 9122 > Vbs−1(k−1) = 215 103636 564239 214148 964894 279914 011247 461724 975356 310315 304521 125864 915845 640470 655765 660631 990628 983351 992037 953401 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.