Information on Result #1303491
Linear OA(9130, 4783017, F9, 20) (dual of [4783017, 4782887, 21]-code), using construction X with Varšamov bound based on
- linear OA(9127, 4783011, F9, 20) (dual of [4783011, 4782884, 21]-code), using
- construction X applied to Ce(19) ⊂ Ce(13) [i] based on
- linear OA(9120, 4782969, F9, 20) (dual of [4782969, 4782849, 21]-code), using an extension Ce(19) of the primitive narrow-sense BCH-code C(I) with length 4782968 = 97−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(985, 4782969, F9, 14) (dual of [4782969, 4782884, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 4782968 = 97−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(97, 42, F9, 5) (dual of [42, 35, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(19) ⊂ Ce(13) [i] based on
- linear OA(9127, 4783014, F9, 19) (dual of [4783014, 4782887, 20]-code), using Gilbert–Varšamov bound and bm = 9127 > Vbs−1(k−1) = 4 829399 806209 492476 801600 662726 569822 840780 033037 120515 922228 623981 637996 712967 179747 257163 925485 083484 253263 772209 903529 [i]
- linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.