Information on Result #1303497
Linear OA(9130, 59085, F9, 28) (dual of [59085, 58955, 29]-code), using construction X with Varšamov bound based on
- linear OA(9128, 59081, F9, 28) (dual of [59081, 58953, 29]-code), using
- construction X applied to Ce(27) ⊂ Ce(21) [i] based on
- linear OA(9121, 59049, F9, 28) (dual of [59049, 58928, 29]-code), using an extension Ce(27) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(996, 59049, F9, 22) (dual of [59049, 58953, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(97, 32, F9, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(27) ⊂ Ce(21) [i] based on
- linear OA(9128, 59083, F9, 27) (dual of [59083, 58955, 28]-code), using Gilbert–Varšamov bound and bm = 9128 > Vbs−1(k−1) = 8 515106 963583 575803 448706 424927 655663 193475 471361 530850 888029 407738 423235 996842 474260 629062 228943 359679 159874 593163 893137 [i]
- linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.