Information on Result #1303543
Linear OA(9137, 4783017, F9, 21) (dual of [4783017, 4782880, 22]-code), using construction X with Varšamov bound based on
- linear OA(9134, 4783011, F9, 21) (dual of [4783011, 4782877, 22]-code), using
- construction X applied to Ce(20) ⊂ Ce(14) [i] based on
- linear OA(9127, 4782969, F9, 21) (dual of [4782969, 4782842, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 4782968 = 97−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(992, 4782969, F9, 15) (dual of [4782969, 4782877, 16]-code), using an extension Ce(14) of the primitive narrow-sense BCH-code C(I) with length 4782968 = 97−1, defining interval I = [1,14], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(97, 42, F9, 5) (dual of [42, 35, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(20) ⊂ Ce(14) [i] based on
- linear OA(9134, 4783014, F9, 20) (dual of [4783014, 4782880, 21]-code), using Gilbert–Varšamov bound and bm = 9134 > Vbs−1(k−1) = 9 725892 938854 106549 089666 579173 776510 396340 653238 532817 817044 409193 869995 011122 730250 081656 462794 410273 928045 219785 354728 175529 [i]
- linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.