Information on Result #1303581
Linear OA(9144, 59083, F9, 31) (dual of [59083, 58939, 32]-code), using construction X with Varšamov bound based on
- linear OA(9143, 59081, F9, 31) (dual of [59081, 58938, 32]-code), using
- construction X applied to Ce(30) ⊂ Ce(24) [i] based on
- linear OA(9136, 59049, F9, 31) (dual of [59049, 58913, 32]-code), using an extension Ce(30) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(9111, 59049, F9, 25) (dual of [59049, 58938, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(97, 32, F9, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(30) ⊂ Ce(24) [i] based on
- linear OA(9143, 59082, F9, 30) (dual of [59082, 58939, 31]-code), using Gilbert–Varšamov bound and bm = 9143 > Vbs−1(k−1) = 40 935474 945383 310002 397984 639599 031806 394981 854493 529621 195622 042944 633986 384740 158498 823430 734310 111359 087917 914915 861979 741799 178057 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9144, 59083, F9, 2, 31) (dual of [(59083, 2), 118022, 32]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9144, 59083, F9, 3, 31) (dual of [(59083, 3), 177105, 32]-NRT-code) | [i] | ||
3 | Digital (113, 144, 59083)-net over F9 | [i] |