Information on Result #1303590
Linear OA(9147, 59077, F9, 32) (dual of [59077, 58930, 33]-code), using construction X with Varšamov bound based on
- linear OA(9145, 59073, F9, 32) (dual of [59073, 58928, 33]-code), using
- construction X applied to Ce(31) ⊂ Ce(27) [i] based on
- linear OA(9141, 59049, F9, 32) (dual of [59049, 58908, 33]-code), using an extension Ce(31) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,31], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(9121, 59049, F9, 28) (dual of [59049, 58928, 29]-code), using an extension Ce(27) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(94, 24, F9, 3) (dual of [24, 20, 4]-code or 24-cap in PG(3,9)), using
- construction X applied to Ce(31) ⊂ Ce(27) [i] based on
- linear OA(9145, 59075, F9, 31) (dual of [59075, 58930, 32]-code), using Gilbert–Varšamov bound and bm = 9145 > Vbs−1(k−1) = 642332 586345 402139 779526 310505 837907 511316 790062 491303 635807 640919 487199 550482 823255 009629 953649 388658 151615 722474 208119 381159 553994 014289 [i]
- linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9147, 59077, F9, 2, 32) (dual of [(59077, 2), 118007, 33]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9147, 59077, F9, 3, 32) (dual of [(59077, 3), 177084, 33]-NRT-code) | [i] | ||
3 | Digital (115, 147, 59077)-net over F9 | [i] |