Information on Result #1303721
Linear OA(1695, 1048596, F16, 20) (dual of [1048596, 1048501, 21]-code), using construction X with Varšamov bound based on
- linear OA(1693, 1048593, F16, 20) (dual of [1048593, 1048500, 21]-code), using
- construction X applied to Ce(19) ⊂ Ce(16) [i] based on
- linear OA(1691, 1048576, F16, 20) (dual of [1048576, 1048485, 21]-code), using an extension Ce(19) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 165−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(1676, 1048576, F16, 17) (dual of [1048576, 1048500, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 165−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(162, 17, F16, 2) (dual of [17, 15, 3]-code or 17-arc in PG(1,16)), using
- extended Reed–Solomon code RSe(15,16) [i]
- Hamming code H(2,16) [i]
- construction X applied to Ce(19) ⊂ Ce(16) [i] based on
- linear OA(1693, 1048594, F16, 18) (dual of [1048594, 1048501, 19]-code), using Gilbert–Varšamov bound and bm = 1693 > Vbs−1(k−1) = 620504 952944 896264 976155 875680 298093 291658 914054 003513 667023 036163 769511 776881 645844 733302 087471 604428 701696 [i]
- linear OA(161, 2, F16, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(161, s, F16, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(1695, 524298, F16, 2, 20) (dual of [(524298, 2), 1048501, 21]-NRT-code) | [i] | OOA Folding |