Information on Result #1303823
Linear OA(16124, 269, F16, 72) (dual of [269, 145, 73]-code), using construction X with Varšamov bound based on
- linear OA(16122, 266, F16, 72) (dual of [266, 144, 73]-code), using
- construction X applied to Ce(71) ⊂ Ce(67) [i] based on
- linear OA(16119, 256, F16, 72) (dual of [256, 137, 73]-code), using an extension Ce(71) of the primitive narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [1,71], and designed minimum distance d ≥ |I|+1 = 72 [i]
- linear OA(16112, 256, F16, 68) (dual of [256, 144, 69]-code), using an extension Ce(67) of the primitive narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [1,67], and designed minimum distance d ≥ |I|+1 = 68 [i]
- linear OA(163, 10, F16, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,16) or 10-cap in PG(2,16)), using
- discarding factors / shortening the dual code based on linear OA(163, 16, F16, 3) (dual of [16, 13, 4]-code or 16-arc in PG(2,16) or 16-cap in PG(2,16)), using
- Reed–Solomon code RS(13,16) [i]
- discarding factors / shortening the dual code based on linear OA(163, 16, F16, 3) (dual of [16, 13, 4]-code or 16-arc in PG(2,16) or 16-cap in PG(2,16)), using
- construction X applied to Ce(71) ⊂ Ce(67) [i] based on
- linear OA(16122, 267, F16, 70) (dual of [267, 145, 71]-code), using Gilbert–Varšamov bound and bm = 16122 > Vbs−1(k−1) = 108 318694 575875 296922 712847 689946 849415 431041 970427 517761 444494 211614 855960 754355 268208 084086 330256 147159 150879 986642 727096 291253 961207 478262 786616 [i]
- linear OA(161, 2, F16, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(161, s, F16, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.