Information on Result #1304292
Linear OA(382, 284, F3, 23) (dual of [284, 202, 24]-code), using 30 step Varšamov–Edel lengthening with (ri) = (2, 0, 1, 0, 0, 0, 1, 5 times 0, 1, 7 times 0, 1, 9 times 0) based on linear OA(376, 248, F3, 23) (dual of [248, 172, 24]-code), using
- construction X applied to Ce(22) ⊂ Ce(21) [i] based on
- linear OA(376, 243, F3, 23) (dual of [243, 167, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(371, 243, F3, 22) (dual of [243, 172, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(382, 283, F3, 2, 23) (dual of [(283, 2), 484, 24]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(382, 283, F3, 3, 23) (dual of [(283, 3), 767, 24]-NRT-code) | [i] | ||
3 | Linear OOA(382, 283, F3, 4, 23) (dual of [(283, 4), 1050, 24]-NRT-code) | [i] | ||
4 | Linear OOA(382, 283, F3, 5, 23) (dual of [(283, 5), 1333, 24]-NRT-code) | [i] | ||
5 | Digital (59, 82, 283)-net over F3 | [i] |