Information on Result #1304294
Linear OA(380, 265, F3, 23) (dual of [265, 185, 24]-code), using 4 step Varšamov–Edel lengthening with (ri) = (1, 0, 0, 0) based on linear OA(379, 260, F3, 23) (dual of [260, 181, 24]-code), using
- construction XX applied to C1 = C([239,18]), C2 = C([0,19]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([239,19]) [i] based on
- linear OA(371, 242, F3, 22) (dual of [242, 171, 23]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(366, 242, F3, 20) (dual of [242, 176, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(376, 242, F3, 23) (dual of [242, 166, 24]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,19}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using
- Hamming code H(3,3) [i]
- linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.