Information on Result #1310923
Linear OA(5101, 637, F5, 32) (dual of [637, 536, 33]-code), using 3 step Varšamov–Edel lengthening with (ri) = (1, 0, 0) based on linear OA(5100, 633, F5, 32) (dual of [633, 533, 33]-code), using
- construction XX applied to C1 = C([126,156]), C2 = C([128,157]), C3 = C1 + C2 = C([128,156]), and C∩ = C1 ∩ C2 = C([126,157]) [i] based on
- linear OA(595, 624, F5, 31) (dual of [624, 529, 32]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {126,127,…,156}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(595, 624, F5, 30) (dual of [624, 529, 31]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {128,129,…,157}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(599, 624, F5, 32) (dual of [624, 525, 33]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {126,127,…,157}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(591, 624, F5, 29) (dual of [624, 533, 30]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {128,129,…,156}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(51, 5, F5, 1) (dual of [5, 4, 2]-code), using
- Reed–Solomon code RS(4,5) [i]
- linear OA(50, 4, F5, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(5101, 318, F5, 2, 32) (dual of [(318, 2), 535, 33]-NRT-code) | [i] | OOA Folding |