Information on Result #1312225
Linear OA(861, 547, F8, 22) (dual of [547, 486, 23]-code), using 27 step Varšamov–Edel lengthening with (ri) = (2, 5 times 0, 1, 20 times 0) based on linear OA(858, 517, F8, 22) (dual of [517, 459, 23]-code), using
- construction XX applied to C1 = C([510,19]), C2 = C([0,20]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([510,20]) [i] based on
- linear OA(855, 511, F8, 21) (dual of [511, 456, 22]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,19}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(855, 511, F8, 21) (dual of [511, 456, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(858, 511, F8, 22) (dual of [511, 453, 23]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,20}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(852, 511, F8, 20) (dual of [511, 459, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(861, 547, F8, 2, 22) (dual of [(547, 2), 1033, 23]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(861, 547, F8, 3, 22) (dual of [(547, 3), 1580, 23]-NRT-code) | [i] | ||
3 | Digital (39, 61, 547)-net over F8 | [i] |