Information on Result #1314049
Linear OA(1676, 282, F16, 39) (dual of [282, 206, 40]-code), using 16 step Varšamov–Edel lengthening with (ri) = (4, 1, 0, 1, 4 times 0, 1, 7 times 0) based on linear OA(1669, 259, F16, 39) (dual of [259, 190, 40]-code), using
- construction XX applied to C1 = C([254,36]), C2 = C([0,37]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([254,37]) [i] based on
- linear OA(1667, 255, F16, 38) (dual of [255, 188, 39]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,36}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(1667, 255, F16, 38) (dual of [255, 188, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(1669, 255, F16, 39) (dual of [255, 186, 40]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,37}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(1665, 255, F16, 37) (dual of [255, 190, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(160, s, F16, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(1676, 141, F16, 2, 39) (dual of [(141, 2), 206, 40]-NRT-code) | [i] | OOA Folding |