Information on Result #1314246
Linear OA(16100, 286, F16, 54) (dual of [286, 186, 55]-code), using 19 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 0, 0, 1, 4 times 0, 1, 8 times 0) based on linear OA(1692, 259, F16, 54) (dual of [259, 167, 55]-code), using
- construction XX applied to C1 = C([254,51]), C2 = C([0,52]), C3 = C1 + C2 = C([0,51]), and C∩ = C1 ∩ C2 = C([254,52]) [i] based on
- linear OA(1690, 255, F16, 53) (dual of [255, 165, 54]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,51}, and designed minimum distance d ≥ |I|+1 = 54 [i]
- linear OA(1690, 255, F16, 53) (dual of [255, 165, 54]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,52], and designed minimum distance d ≥ |I|+1 = 54 [i]
- linear OA(1692, 255, F16, 54) (dual of [255, 163, 55]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,52}, and designed minimum distance d ≥ |I|+1 = 55 [i]
- linear OA(1688, 255, F16, 52) (dual of [255, 167, 53]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,51], and designed minimum distance d ≥ |I|+1 = 53 [i]
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(160, s, F16, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.