Information on Result #1314412
Linear OA(2547, 959, F25, 20) (dual of [959, 912, 21]-code), using 323 step Varšamov–Edel lengthening with (ri) = (3, 0, 1, 6 times 0, 1, 20 times 0, 1, 52 times 0, 1, 98 times 0, 1, 140 times 0) based on linear OA(2539, 628, F25, 20) (dual of [628, 589, 21]-code), using
- construction XX applied to C1 = C([623,17]), C2 = C([0,18]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C([623,18]) [i] based on
- linear OA(2537, 624, F25, 19) (dual of [624, 587, 20]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,17}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(2537, 624, F25, 19) (dual of [624, 587, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(2539, 624, F25, 20) (dual of [624, 585, 21]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,18}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2547, 959, F25, 2, 20) (dual of [(959, 2), 1871, 21]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Digital (27, 47, 959)-net over F25 | [i] |