Information on Result #1315048
Linear OA(27102, 759, F27, 50) (dual of [759, 657, 51]-code), using 21 step Varšamov–Edel lengthening with (ri) = (4, 0, 1, 5 times 0, 1, 12 times 0) based on linear OA(2796, 732, F27, 50) (dual of [732, 636, 51]-code), using
- construction XX applied to C1 = C([727,47]), C2 = C([0,48]), C3 = C1 + C2 = C([0,47]), and C∩ = C1 ∩ C2 = C([727,48]) [i] based on
- linear OA(2794, 728, F27, 49) (dual of [728, 634, 50]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,47}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2794, 728, F27, 49) (dual of [728, 634, 50]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,48], and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2796, 728, F27, 50) (dual of [728, 632, 51]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,48}, and designed minimum distance d ≥ |I|+1 = 51 [i]
- linear OA(2792, 728, F27, 48) (dual of [728, 636, 49]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,47], and designed minimum distance d ≥ |I|+1 = 49 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(27102, 379, F27, 2, 50) (dual of [(379, 2), 656, 51]-NRT-code) | [i] | OOA Folding |