Information on Result #1315299
Linear OA(3271, 1163, F32, 32) (dual of [1163, 1092, 33]-code), using 128 step Varšamov–Edel lengthening with (ri) = (4, 0, 1, 5 times 0, 1, 15 times 0, 1, 33 times 0, 1, 69 times 0) based on linear OA(3263, 1027, F32, 32) (dual of [1027, 964, 33]-code), using
- construction XX applied to C1 = C([1022,29]), C2 = C([0,30]), C3 = C1 + C2 = C([0,29]), and C∩ = C1 ∩ C2 = C([1022,30]) [i] based on
- linear OA(3261, 1023, F32, 31) (dual of [1023, 962, 32]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(3261, 1023, F32, 31) (dual of [1023, 962, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(3263, 1023, F32, 32) (dual of [1023, 960, 33]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(3259, 1023, F32, 30) (dual of [1023, 964, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3271, 1163, F32, 2, 32) (dual of [(1163, 2), 2255, 33]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Digital (39, 71, 1163)-net over F32 | [i] |