Information on Result #1323436
Linear OA(9110, 129, F9, 77) (dual of [129, 19, 78]-code), using construction X with Varšamov bound based on
- linear OA(9109, 127, F9, 77) (dual of [127, 18, 78]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9102, 118, F9, 77) (dual of [118, 16, 78]-code), using
- 4 times truncation [i] based on linear OA(9106, 122, F9, 81) (dual of [122, 16, 82]-code), using
- linear OA(9102, 120, F9, 71) (dual of [120, 18, 72]-code), using Gilbert–Varšamov bound and bm = 9102 > Vbs−1(k−1) = 15 237273 610826 863806 184656 091402 951132 290534 517010 657002 889205 777017 273419 494270 905780 024874 599673 [i]
- linear OA(95, 7, F9, 5) (dual of [7, 2, 6]-code or 7-arc in PG(4,9)), using
- discarding factors / shortening the dual code based on linear OA(95, 9, F9, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,9)), using
- Reed–Solomon code RS(4,9) [i]
- discarding factors / shortening the dual code based on linear OA(95, 9, F9, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,9)), using
- linear OA(9102, 118, F9, 77) (dual of [118, 16, 78]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9109, 128, F9, 76) (dual of [128, 19, 77]-code), using Gilbert–Varšamov bound and bm = 9109 > Vbs−1(k−1) = 98 482854 915665 517279 818522 610865 232671 005266 632738 487215 604560 676221 436755 887473 314276 251588 737716 314681 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.