Information on Result #1323878
Linear OA(3241, 6642, F3, 41) (dual of [6642, 6401, 42]-code), using construction X with Varšamov bound based on
- linear OA(3240, 6640, F3, 41) (dual of [6640, 6400, 42]-code), using
- construction X applied to Ce(40) ⊂ Ce(30) [i] based on
- linear OA(3217, 6561, F3, 41) (dual of [6561, 6344, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(3161, 6561, F3, 31) (dual of [6561, 6400, 32]-code), using an extension Ce(30) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(323, 79, F3, 9) (dual of [79, 56, 10]-code), using
- discarding factors / shortening the dual code based on linear OA(323, 82, F3, 9) (dual of [82, 59, 10]-code), using
- a “GraX†code from Grassl’s database [i]
- discarding factors / shortening the dual code based on linear OA(323, 82, F3, 9) (dual of [82, 59, 10]-code), using
- construction X applied to Ce(40) ⊂ Ce(30) [i] based on
- linear OA(3240, 6641, F3, 40) (dual of [6641, 6401, 41]-code), using Gilbert–Varšamov bound and bm = 3240 > Vbs−1(k−1) = 2 804560 191718 152127 419153 471665 708256 284855 135047 106457 602181 573085 982094 527328 707939 812338 743387 900544 024130 781377 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3241, 3321, F3, 2, 41) (dual of [(3321, 2), 6401, 42]-NRT-code) | [i] | OOA Folding |